Hasilpengukuran intensitas radiasi biasanya menggunakan satuan cps (counts per second) yaitu jumlah radiasi per detik, atau cpm (counts per minute) yaitu jumlah radiasi per menit. 1 cps = 60 cpm. C. Dosis - Laju Dosis. Laju dosis sebenarnya identik dengan intensitas hanya saja sudah dikonversi dengan beberapa konstanta fisis agar sesuai
Jakarta - Detikers, coba ingat-ingat lagi materi pelajaran IPA saat kamu masih di bangku SD. Sebab, di SD kamu tentu sudah pernah belajar tentang materi besaran dan satuan, kan?Kalau kamu lupa, kamu bisa simak penjelasan di bawah ini, terutama kalau kamu lupa tentang materi besaran pasti akan selalu dipakai dalam perhitungan di dalam ilmu fisika. Secara garis besar, besaran dikategorikan ke dalam dua jenis, yaitu besaran pokok dan besaran turunan. Untuk memahaminya lebih baik, pertama kamu perlu tahu dulu apa yang dimaksud sebagai besaran, Itu Besaran?Pada dasarnya, besaran merupakan segala benda atau sesuatu yang dapat diukur. Mengapa harus ada besaran? Karena di kehidupan sehari-hari, ternyata jenis besaran yang digunakan karena itu, para ilmuwan pada zaman dulu lantas membuat kesepakatan tentang dasar pengukuran yang seragam, yang kemudian dikenal sebagai sistem besaran pokok. Tak hanya kesepakatan saja, sistem besaran pokok yang digunakan juga disamakan lewat standar begitu, pada dasarnya sistem besaran pokok ini digunakan oleh semua orang di seluruh dunia. Total, terdapat 7 tujuh besaran pokok internasional yang wajib kamu ingat, yaituBesaran PokokLambang BesaranSatuan Internasional & LambangPanjanglmeter mMassamkilogram kgWaktutdetik/second sSuhuTKelvin KKuat Arus ListrikIAmpere AIntensitas CahayaIvCandela cdJumlahmolMol1. PanjangSatuan Internasional meter mMerupakan besaran pokok untuk menentukan jarakDefinisi untuk satu meter adalah jarak yang ditempuh oleh cahaya dalam kurun waktu 1/ MassaSatuan internasional kilogram kgMerupakan besaran pokok untuk menentukan kuantitas sebuah bendaDefinisi untuk massa adalah silinder yang terbuat dari campuran logam platinum dan iridium, dan sekarang silinder tersebut tersimpan di Paris, WaktuSatuan internasional detik atau second sMerupakan besaran pokok untuk waktuDefinisi untuk satu second adalah waktu yang dibutuhkan atom cesium untuk bergetarsebanyak SuhuSatuan internasional Kelvin KMerupakan besaran pokok untuk ukuran panas sebuah benda5. Kuat Arus ListrikSatuan internasional ampere ADefinisi untuk satu ampere adalah besar kuat arus listrik yang diperlukan dalam memindahkan muatan listrik sebesar 1 coulomb dalam 1 Intensitas CahayaSatuan internasional candela cdDefinisi intensitas cahaya merupakan pancaran radiasi monokromatik di dalam satu arah yang berasal dari satu sumber cahaya berfrekuensi 540 x 1012 Hz yang berintensitas radian sebesar 1/683 watt per radian7. Jumlah ZatSatuan internasional mol molMerupakan besaran pokok yang menyatakan jumlah elementer dari zat, baik itu molekul, unsur, ion, maupun senyawaDefinisi satu mol adalah jumlah zat yang banyaknya sama dengan 12 gram atom karbon-12Apa Itu Besaran Turunan?Setelah mengenal besaran pokok, kamu bisa beralih mempelajari tentang besaran turunan. Nah, besaran turunan adalah satuan besaran yang merupakan turunan dari besaran pokok. Contohnya lewat perkalian atau pembagian dua besaran pokok, dan ketujuh besaran pokok di atas, jumlah besaran turunan yang bisa kamu temukan ada banyak, Detikers. Tapi, ada beberapa besaran turunan yang umum kamu temukan dalam pelajaran fisika di sekolah, yaituBesaran TurunanLambangRumusSatuanLuasAPanjang x Lebarm2VolumeVPanjang x Lebar x Tinggim3Massa jenisPMassa/Volumekg/ m3KecepatanvPerpindahan/Waktum/sPercepatanaKecepatan/Waktum/s2GayaFMassa x PercepatanNewton N = dan energiWGaya x PerpindahanJoule J = /s2TekananPGaya/LuasPascal Pa = N/m2DayaPUsaha/WaktuWatt W = x pal/pal
Sedangsatuan lama yang masih lebih sering digunakan adalah Roentgen (R) dengan konversi sebagai berikut 1 Roentgen = 2,58 x 10-4 C/kg. Pusat Pendidikan dan Pelatihan 13 Proteksi Radiasi Laju paparan adalah besar paparan per satuan waktu. Satuan laju paparan yang banyak digunakan adalah R/jam dengan turunannya seperti mR/jam atau µR/jam. q
Menurut [9], bahwa matahari memiliki diameter sebesar 1,39 Ć 109 m dan jarak rata-rata matahari dari permukaan bumi adalah 1,5 Ć 1011 m. Bumi mengelilingi matahari dengan lintasan berbentuk elips dengan matahari berada pada salah satu pusatnya. Karena lintasan bumi terhadap matahari berbentuk elips maka jarak antara bumi dan matahari adalah tidak konstan. Jarak terdekat adalah 1,47 x 1011 m yang terjadi pada tanggal 3 Januari dan jarak terjauh terjadi pada tanggal 3 Juli dengan jarak 1,52 x 1011 m. Perbedaan jarak inilah salah satu yang menyebabkan intensitas radiasi matahari yang diterima atmosfer bumi juga menjadi berbeda. Gambar Posisi matahari dan bumi Dengan mengetahui posisi astronomi dan ketinggian suatu daerah maka dapat diprediksi besarnya intensitas radiasi matahari secara teoritis pada waktu tertentu Matahari Bumi 32o 1,495 x 1011 m 1,27 x 107 m 1,39 x 109 m Gsc = 1367 W/m2 dengan mengasumsikan kondisi langit cerah. Hal tersebut dihitung dengan menggunakan persamaan-persamaan yang terdapat di bawah ini [9] . Persamaan radiasi pada atmosfer Gon yang dibuat oleh Spencer adalah Gon = Gsc1,00011 + 0,034221 cosB + 0,00128 sinB + 0,000719 cos2B + 0,000077 sin2B dimana B merupakan konstanta hari yang bergantung pada nilai n dan dapat dihitung dengan persamaan 365 360 1 B nļ ļ½ dimana Gon adalah radiasi yang diterima atmosfer bumi W/m2, Gsc adalah daya radiasi rata-rata yang diterima atmosfer bumi 1367 W/m2 dan n adalah konstanta yang bergantung pada tanggal i. Parameter lain yang dijumpai dalam perhitungan radiasi teoritis matahari adalah solar time atau jam matahari. Jam matahari merupakan waktu berdasarkan pergerakan semu matahari di langit pada tempat tertentu. Jam matahari yang disimbolkan dengan ST berbeda dengan penunjukkan jam biasa standard time yang disimbolkan dengan STD. Hubungan kedua parameter tersebut adalah ST = STD ± 4 Lst-Lloc + E dimana STD = waktu lokal standard time Lst = standart meridian untuk waktu lokal o Lloc = posisi atau derajat bujur untuk daerah yang dihitung o dimana untuk bujur timur BT, digunakan -4, untuk bujur barat BB digunakan +4 E = faktor persamaan waktu equation of time Tabel Urutan hari berdasarkan bulan Bulan n Januari i Februari 31 + i Maret 59 + i April 90 + i Mei 120 + i Juni 151 + i Juli 181 + i Agustus 212 + i September 243 + i Oktober 273 + i November 304 + i Desember 334 + i Nilai dari faktor persamaan waktu dapat ditentukan dari E = 229,20,000075 + 0,001868cosB - 0,032077sinB - 0,014615cos2B - 0,04089 sin2B Untuk menentukan besar dan arah radiasi maka terdapat beberapa parameter yang harus diketahui dan tampak pada gambar Gambar Sudut sinar dan posisi sinar matahari Keterangan gambar dapat dijabarkan sebagai berikut. - β adalah sudut antara permukaan yang dianalisis dengan bidang horizontal dimana rentang nilainya 0 ⤠β ⤠900. - γ adalah sudut penyimpangan sinar pada bidang proyeksi dimana 0o pada selatan dan positif ke barat. - Īø angle accident adalah sudut penyinaran yang merupakan sudut yang dibentuk sinar dan garis normal dari suatu permukaan. - Īøz adalah sudut zenith yaitu sudut yang dibentuk garis sinar terhadap garis zenith. Besarnya kosinus sudut zenith dapat ditentukan melalui persamaan berikut cos Īø = cos Ļ cos Ī“ cos + sin Ļ sin Ī“ - αs solar altitude angle adalah sudut ketinggian matahari yang merupakan sudut antara sinar dengan permukaan. - γs sudut azimut matahari yaitu sudut antara proyeksi matahari terhadap selatan ke timur adalah negatif dan ke barat adalah positif. - Ī“ sudut deklinasi sering digunakan dalam menentukan jumlah radiasi yang dapat diterima oleh sebuah permukaan di bumi yaitu kemiringan sumbu matahari terhadap garis normalnya. Besarnya sudut deklinasi ļ¤ dalam rad dapat dihitung dengan menggunakan persamaan = C1 + C2CosB + C3sinB + C4cos2B + C5sin2B + C6cos3B + C7sin3B dimana C1 = 0,006918 C5 = 0,000907 C2 = -0,399912 C6 = -0,002679 C3 = 0,070257 C7 = 0,00148 C4 = -0,006758 - sudut jam matahari adalah sudut pergeseran semu matahari dari dari garis siangnya yang dihitung berdasarkan jam matahari ST dimana setiap berkurang 1 jam, berkurang 150 dan setiap bertambah 1 jam, bertambah 150. Hal ini berarti bahwa tepat pukul siang maka harga =0, pada pukul pagi harga = -150 dan pukul maka nilai = 300. Sudut jam matahari dapat dihitung dengan persamaan 60 STD15 ST 12 15STD ļ½ ļ ļ« ļ Dengan mengasumsikan kondisi langit cerah maka besarnya fraksi radiasi matahari yang diteruskan dari atmosfer ke permukaan bumi adalah ļ·ļ·ļø ļ§ļ§ ļ¶ ļØ ļ« ļ¦ ļ ļ½ z 1 o b cosĪø exp k a a dimana ao = ro [0,4237 - 0,0082 6 - A2] a1 = r1 [0,5055 + 0,00595 - 2] k = rk [ + - A2] A = ketinggian daerah dari permukaan laut km ro,r1,rk = faktor koreksi akibat iklim Tabel Faktor koreksi iklim Iklim ror1rk Tropical Midatude Summer Subarctic Summer Midatude Winter Radiasi beam atau sering juga disebut radiasi langsung direct solar radiation adalah radiasi yang langsung ditransmisikan dari atmosfer ke permukaan bumi yang dihitung dengan persamaan Gbeam = Gon b cos Īøz Gon = radiasi yang diterima atmosfer W/m2 b = fraksi radiasi yang diteruskan ke bumi cos Īøz = kosinus sudut zenith Gbeam = radiasi yang ditransmisikan dari atmosfer ke permukaan bumi W/m2 Radiasi diffuse dapat dikatakan juga sebagai radiasi energi surya yang telah dibelokkan oleh atmosfer atau radiasi yang dipantulkan ke segala arah dan kemudian dimanfaatkan yang dapat dihitung dengan persamaan Gdifuse = Gon cos Īøz 0,271 ā 0,294 b Radiasi total merupakan jumlah dari radiasi beam dan radiasi diffuse yaitu Gtotal = Gbeam + Gdifuse Bila permukaan tersebut memiliki sudut kemiringan sebesar β maka untuk menghitung besarnya intensitas radiasi matahari yang dapat diserap oleh permukaan tersebut, perlu diketahui perbandingan radiasinya dengan bidang horizontal. Gbm Gbm Gb Gbt Gambar Radiasi pada permukaan datar dan miring Berdasarkan gambar maka perbandingan radiasi pada kedua permukaan tersebut dapat dirumuskan dengan z dimana cos Īø adalah kosinus dari sudut penyinaran angle accident. Bila dengan menggunakan persamaan di atas hasil yang diperoleh terlalu besar maka sebaiknya digunakan perbandingan rata-rata yang dihitung dengan persamaan b Untuk mencari besarnya nilai cos ļ± sudut penyinaran pada daerah di belahan bumi bagian utara atau lintang utara cos ļ±ļ ļ½ļ cos ļ¦ - ļ¢ cos ļ¤ cos ļ· + sin ļ¦ - ļ¢ sin ļ¤ dan untuk daerah di belahan bumi bagian selatan atau lintang selatan cos ļ±ļ ļ½ļ cos ļ¦ + ļ¢ cos ļ¤ cos ļ· + sin ļ¦ + ļ¢ sin ļ¤ Adsorben Secara umum adsorben didefinisikan sebagai suatu zat padat yang dapat menyerap partikel adsorbat dalam proses adsorpsi. Adsorben memiliki sifat khusus dan terbuat dari bahan-bahan yang berpori. Perlu diketahui bahwa pemilihan jenis adsorben yang akan digunakan dalam suatu proses adsorpsi mesti disesuaikan dengan sifat dan keadaan adsorbat yang akan diadsorpsi serta nilai ekonomisnya. Alumina Aktif Alumina aktif merupakan suatu alumina yang berbentuk butir, berpori, sangat besar daya serap terhadap air, gas, uap dan cairan tertentu. Jika telah jenuh dapat diaktifkan kembali dengan jalan memanaskannya sampai temperatur 150 - 325oC, proses ini dapat diulang beberapa kali [13]. Alumina aktif banyak digunakan untuk menghilangkan uap-uap minyak yang ada dalam gas oksigen, hidrogen, karbon dioksida, gas alam dan lain-lain, juga digunakan sebagai katalisator. Salah satu bentuk senyawa alumina aktif adalah molecular sieves yang memiliki kemampuan untuk melepaskan air saat dipanaskan dan re-adsorb pada proses pendinginan. Molecular sieves memiliki rumus molekul M2/nO ⢠Al2O3 ⢠xSiO2 yH2O, dengan M adalah kation dengan n valensi. Salah satu adsorben yang digunakan pada penelitian ini adalah alumina aktif molecular sieves 13X yang merupakan salah satu jenis alumina aktif komersial dengan rumus kimia Na86[AlO286 SiO2106]. 264H2O memiliki lubang atau rongga internal berbentuk elips dengan diameter 13 Angstroms dan diameter pori sekitar 8 Angstroms [14]. Proses penyerapan pada molecular sieves adalah akibat muatan kation yang ada pada kisi kristal. Muatan kation ini bertindak sebagai situs positif lokal yang kuat dan muatan elektrostatisnya akan menarik ujung molekul polar dari bahan yang akan diadsorpsi. Oleh karena itu bila semakin besar polaritas molekul maka sifat adsorpsinya semakin besar. Disamping itu pemilihan alumina aktif tersebut sebagai adsorben karena harganya yang jauh lebih ekonomis dibandingkan dengan karbon aktif komersial. Karbon Aktif Karbon aktif merupakan adsorben yang mudah didapat di seluruh daerah di Indonesia, harganya murah, tidak berbahaya, dan mempunyai sifat adsorpsi yang baik. Karbon aktif adalah material yang berbentuk butiran atau bubuk yang berasal dari bahan yang mengandung karbon misalnya batubara, cangkang kelapa, dan sebagainya. Dengan pengolahan tertentu yaitu proses aktivasi seperti perlakuan dengan tekanan dan temperatur tinggi, dapat diperoleh karbon aktif yang memiliki permukaan pori yang luas. Arang merupakan suatu padatan berpori yang mengandung 85 - 95% karbon, dihasilkan dari bahan-bahan yang mengandung karbon dengan pemanasan pada temperatur tinggi. Ketika pemanasan berlangsung, diusahakan agar tidak terjadi kebocoran udara didalam ruangan pemanasan sehingga bahan yang mengandung karbon tersebut hanya terkarbonisasi dan tidak teroksidasi. Arang selain digunakan sebagai bahan bakar, juga dapat digunakan sebagai adsorben penyerap. Daya serap ditentukan oleh luas permukaan partikel dan kemampuan ini dapat menjadi lebih tinggi jika terhadap arang tersebut dilakukan aktifasi dengan demikian disebut sebagai arang aktif. Dalam satu gram karbon aktif, pada umumnya memiliki luas permukaan seluas 500-1500 m2, sehingga sangat efektif dalam menangkap partikel-partikel yang sangat halus berukuran mm [11]. Karbon aktif bersifat sangat aktif dan akan menyerap apa saja yang kontak dengan karbon tersebut. Dalam waktu 60 jam biasanya karbon aktif tersebut menjadi jenuh dan tidak aktif lagi. Oleh karena itu biasanya arang aktif dikemas dalam kemasan yang kedap udara. Sampai tahap tertentu beberapa jenis arang aktif dapat direaktivasi kembali, meskipun demikian tidak jarang disarankan untuk sekali pakai. Karbon aktif dan metanol merupakan pasangan yang sesuai untuk mendapatkan nilai COP yang lebih baik dan lebih murah dibanding pasangan lain untuk siklus pendingin adsorpsi [12]. Pada penelitian ini khusus untuk adsorben karbon aktif digunakan jenis karbon aktif butiran non komersial produksi lokal. Refrijeran Adsorbat atau refrijeran merupakan suatu bahan yang mudah berubah fasa dari gas menjadi cair atau sebaliknya dalam suatu proses pendinginan. Prinsip kerja dari refrijeran adalah dengan mengambil panas dari evaporator dan membuangnya di kondensor. Untuk keperluan suatu jenis pendinginan seperti untuk pendinginan udara atau pengawet beku maka diperlukan refrijeran dengan karakteristik termodinamika yang sesuai. Beberapa syarat untuk refrijeran adalah [15, 16, 17]. 1. Tidak dapat terbakar atau meledak bila tercampur dengan udara, pelumas dan sebagainya. 2. Tidak menyebabkan korosi terhadap bahan logam yang dipakai pada sistem mesin pendingin. 3. Mempunyai titik didih dan kondensasi yang rendah. 4. Mempunyai panas laten penguapan yang besar agar panas yang diserap evaporator cukup besar. 5. Memiliki konduktivitas termal yang tinggi. Metanol secara umum dikenal sebagai metil alkohol, wood alcohol atau spiritus dan merupakan bentuk alkohol paling sederhana. Untuk kondisi tekanan atmosfer maka metanol berbentuk cairan yang ringan, mudah menguap, tidak berwarna, mudah terbakar dan beracun dengan bau yang khas. Saat ini metanol digunakan sebagai bahan pendingin anti beku, pelarut, bahan bakar dan sebagai bahan aditif bagi industri. Untuk penelitian ini digunakan metanol sebagai refrijeran dimana sifat refrijeran dapat dilihat pada tabel Tabel Sifat refrijeran metanol [11] Parameter Keterangan Rumus molekul CH3OH Massa jenis 787 kg/m³ Titik lebur - 97,7oC Titik didih 64,5oC Sifat cair, flammable F, toxic T Panas laten penguapan 1155 kJ/kg
Radiasibenda-hitam adalah salah satu jenis radiasi elektromagnetik termal yang terjadi di dalam atau di sekitar benda dalam keadaan kesetimbangan termodinamika dengan lingkungannya atau saat ada proses pelepasan dari benda hitam.Benda hitam merupakan benda yang buram dan tidak memantulkan cahaya. Diasumsikan demi perhitungan dan teori berada pada suhu konstan dan seragam.
Semakin besar mA akan menghasilkan intensitas sinar-X yang semakin besar. Pengaturan tegangan kV akan menyebabkan perubahan āgaya tarikā anoda terhadap elektron sehingga kecepatan elektron menuju menubruk target akan berubah. Hal ini menyebabkan energi sinar-X yang dihasilkan akan mengalami perubahan. Semakin besar kV akan menghasilkan energi dan intensitas sinar-X yang semakin besar. Bila arus mA dinaikkan maka spektrum sinar-X akan semakin tinggi intensitasnya dengan puncak pada energi atau panjang gelombang yang tetap. Bila tegangan kV dinaikkan maka intensitas semakin tinggi dan puncaknya bergeser ke kiri, panjang gelombang mengecil atau energi membesar. INTERAKSI SINAR-X DENGAN MATERI Beberapa peristiwa yang menyebabkan terjadinya sinar-X telah dibahas pada bagian sebelum ini, sedangkan pada bagian ini akan dibahas proses atau interaksi yang terjadi bila radiasi sinar-X tersebut mengenai materi. Intensitas Radiasi Sinar-X sebagaimana radiasi gelombang elektromagnetik yang lain memancar ke segala arah secara merata. Jumlah radiasi persatuan waktu per satuan luas intensitas disuatu tempat sangat tergantung pada tiga hal yaitu jumlah radiasi yang dipancarkan oleh sumber, jarak antara tempat tersebut dan sumber radiasinya serta medium diantaranya. Hubungan antara intensitas radiasi terhadap jarak mengikuti persamaan āinverse square lawā hukum kuadrat terbalik sebagaimana berikut Universitas Sumatera Utara Dimana I 1 = intensitas di titik 1 I 2 = intensitas di titik 2 r 1 = jarak antara titik1 dan sumber r 2 = jarak antara titik 2 dan sumber Salah satu prinsip proteksi radiasi ekstrena adalah jarak, semakin jauh posisi seseorang dari sumber radiasi maka intensitas radiasi yang diterimanya akan semakin kecil, mengikuti hukum kuadrat terbalik diatas. Atenuasi Sinar-X Intensitas radiasi sinar-X setelah melalui bahan dengan tebal tertentu akan mengalami pelemahan atau atenuasi gambar mengikuti persamaan berikut I = I e -µx ..................................................................................... Dimana I , I = Intensitas sebelum dan sesudah menembus bahan. X = tebal bahan yang diperiksa µ = koefisien absorbsi linier tergantung dari jenis bahan dan tenaga sumber yang digunakan I I X Gambar Atenuasi intensitas radiasi setelah melalui bahan. Bahan Universitas Sumatera Utara HVL half value layer adalah tebal bahan yang dapat menyerap intensitas radiasi menjadi separuhnya, sedangkan TVL tenth value layer adalah tebal bahan yang dapat menyerap intensitas radiasi menjadi seper-sepuluhnya. Nilai HVL dan TVL suatu bahan dapat dihitung dari koefisien serap linier µ nya dengan persamaan berikut Contoh Koefisien serap suatu bahan adalah 0,1386mm. Bila bahan tersebut digunakan sebagai penahan radiasi sinar-X maka tebal yang dibutuhkan untuk menurunkan intensitas radiasi dari 10mRjam adalah HVL bahan = 0,6930,1386 = 5 mm I x I = 2,5 10 = ¼ Tebal yang diperlukan adalah 2 x HVL = 2 x 5 mm = 10 mm satu HVL menurunkan ½ nya maka diperlukan 2 HVL untuk menurunkan ¼ nya. Universitas Sumatera Utara Tabel Jumlah HVL dengan jumlah I x I Jumlah HVL I x I 1 1 2 2 1 4 3 1 8 4 1 16 5 1 32 dan seterusnya....... Tabel Jumlah TVL dengan jumlah I x I Jumlah TVL I x I 1 1 10 2 1 100 3 1 1000 dan seterusnya....... Mekanisme Interaksi
SoalNo. 1). Istilah yang menunjukkan banyaknya suatu besaran disebut . Soal No. 2). Di antara besaran-besaran berikut, yang termasuk ke dalam kelompok besaran pokok adalah . Soal No. 3). Di bawah ini yang merupakan besaran turunan adalah . Soal No. 4). Besaran yang bukan besaran turunan adalah . Soal No. 5).
Proteksi Radiasi BAB II Besaran dan Satuan Radiasi A. Aktivitas Radioaktivitas atau yang lebih sering disingkat sebagai aktivitas adalah nilai yang menunjukkan laju peluruhan zat radioaktif, yaitu jumlah inti atom yang tidak stabil radioisotop berubah menjadi stabil dalam satu detik. Gambar 13 sebuah proses peluruhan Satuan aktivitas yang lama tetapi masih sering digunakan adalah Currie Ci sedangkan satuan SI nya adalah Bequerel Bq dengan faktor konversi 1 Ci = 3,7 1010 Bq Satu Bq. setara dengan satu peluruhan dalam satu detik. Dalam setiap proses peluruhan tidak selalu dipancarkan satu buah radiasi. Sebagai contoh, Bq radioisotop Cs-137 akan memancarkan 85 radiasi gamma setiap detiknya, sedangkan Bq radioisotop Co-60 akan memancarkan radiasi gamma per detik. Perbedaan ini ditentukan oleh probabilitas pancaran radiasi yield dari radioisotopnya. B. Intensitas Intensitas radiasi adalah suatu nilai yang menunjukkan jumlah pancaran radiasi per detik pada suatu posisi, baik yang dihasilkan oleh radioisotop zat radioaktif maupun sumber radiasi lainnya seperti pesawat sinar-X, mesin berkas elektron, akselerator, maupun reaktor nuklir. Beberapa fasilitas 12 Pusat Pendidikan dan Pelatihan Proteksi Radiasi memang tidak menggunakan istilah intensitas melainkan fluks tetapi mempunyai pengertian yang hampir sama. Hasil pengukuran intensitas radiasi biasanya menggunakan satuan cps counts per second yaitu jumlah radiasi per detik, atau cpm counts per minute yaitu jumlah radiasi per menit. 1 cps = 60 cpm C. Dosis ā Laju Dosis Laju dosis sebenarnya identik dengan intensitas hanya saja sudah dikonversi dengan beberapa konstanta fisis agar sesuai dengan keperluan proteksi radiasi. Sedangkan dosis merupakan perkalian laju dosis dengan selang waktu radiasi. Terdapat beberapa jenis besaran dosis dan satuannya sebagai berikut. q Paparan exposure Paparan didefinisikan sebagai kemampuan radiasi sinar-X atau gamma untuk menimbulkan ionisasi di udara dalam volume tertentu. Secara matematis paparan dapat dituliskan sebagai X= dQ dm dQ adalah jumlah muatan pasangan ion yang terbentuk dalam suatu elemen volume udara bermassa dm. Pada sistem satuan internasional SI, satuan paparan adalah coulomb/kilogram C/kg. Pengertian 1 C/kg adalah besar paparan yang dapat menyebabkan terbentuknya muatan listrik sebesar satu coulomb pada suatu elemen volume udara yang mempunyai massa 1 kg. Sedang satuan lama yang masih lebih sering digunakan adalah Roentgen R dengan konversi sebagai berikut 1 Roentgen = 2,58 x 10-4 C/kg. Pusat Pendidikan dan Pelatihan 13 Proteksi Radiasi Laju paparan adalah besar paparan per satuan waktu. Satuan laju paparan yang banyak digunakan adalah R/jam dengan turunannya seperti mR/jam atau µR/jam. q Dosis Serap absorbed dose Dosis serap didefinisikan sebagai energi rata-rata yang diserap bahan per satuan massa bahan tersebut. Secara matematis dosis serap dituliskan sebagai berikut D= dE dm dE adalah energi yang diserap oleh bahan yang mempunyai massa dm. Satuan dosis serap dalam SI adalah Joule/kg atau sama dengan gray Gy. Satu gray adalah energi rata-rata sebesar 1 joule yang diserap bahan dengan massa 1 kg. 1 gray Gy = 1 joule/kg Satuan lama adalah rad. Satu rad adalah energi rata-rata sebesar 100 erg yang diserap bahan dengan massa 1 gram. 1 gray Gy = 100 rad Besaran dosis serap ini berlaku untuk semua jenis radiasi dan semua jenis bahan yang dikenainya. Berbeda dengan paparan yang hanya berlaku untuk radiasi gamma dan sinar-X dengan medium udara. Hubungan dosis serap dengan paparan adalah D= f ĆX Keterangan D = dosis serap Rad X = paparan R F = faktor konversi dari laju paparan ke laju dosis serap Rad/R 14 Pusat Pendidikan dan Pelatihan Proteksi Radiasi Tabel konversi dosis serap tehadap paparan pada foton berbagai energi Energi Foton MeV Nilai f dalam Udara rad/R Nilai f dalam Otot rad/R 0,010 0,019 0,925 0,020 0,879 0,927 0,040 0,879 0,920 0,060 0,905 0,929 0,080 0,932 0,940 0,10 0,949 0,949 0,50 0,965 0,957 1,00 0,965 0,957 2,00 0,965 0,955 3,00 0,962 0,955 Berdasarkan nilai konversi dosis di atas, dalam bidang proteksi radiasi praktis, disepakati nilai konversi dosis f besarnya = 1 rad/R q Dosis Ekivalen equivalent dose Ternyata dosis serap yang sama tetapi berasal dari jenis radiasi yang berbeda akan memberikan efek biologi yang berbeda pada sistem tubuh. Hal ini terjadi karena daya ionisasi masing-masing jenis radiasi berbeda. Makin besar daya ionisasi, makin tinggi tingkat kerusakan biologi yang ditimbulkannya. Dosis ekivalen mengeliminasi masalah ini dengan memasukkan faktor konversi lain yaitu faktor bobot radiasi Wr. H = ā D Ć Wr dengan H adalah dosis ekivalen. Satuan dosis ekivalen dalam SI adalah sievert Sv dan satuan lama adalah rem. Hubungan antara kedua satuan tersebut adalah 1 sievert Sv = 100 rem Pusat Pendidikan dan Pelatihan 15 Proteksi Radiasi Tabel Nilai faktor bobot berbagai jenis radiasi Jenis Radiasi wR 1. Foton, untuk semua energi 1 2. Elektron dan Muon, semua energi 1 3. Neutron dengan energi a. 100 keV hingga 2 MeV 20 d. > 2 MeV hingga 20 MeV 10 e. > 20 MeV 5 4. Proton, selain proton rekoil, dengan 5 Energi > 2 MeV 5. Partikel alpha, fragmen fisi, inti berat q 20 Dosis Efektif E Pada penyinaran seluruh tubuh di mana setiap organ/jaringan menerima dosis ekivalen yang sama ternyata efek biologi setiap organ/jaringan berbeda. Hal ini disebabkan oleh perbedaan sensitvitas organ/jaringan tersebut terhadap radiasi. Dalam hal ini efek radiasi yang diperhitungkan adalah efek stokastik. Oleh sebab itu diperlukan besaran dosis lain yang disebut dosis efektif, dengan simbol E. Tingkat kepekaan organ atau jaringan tubuh terhadap efek stokastik akibat radiasi disebut faktor bobot organ atau faktor bobot jaringan tubuh, dengan simbol wT . Secara matematis dosis efektif diformulasikan sebagai berikut. E = ā wT H Satuan dosis efektif ialah rem atau sievert Sv. 16 Pusat Pendidikan dan Pelatihan Proteksi Radiasi Tabel Nilai Faktor Bobot Berbagai Organ Tubuh No. Organ atau Jaringan Tubuh WT 1 Gonad 0,20 2 Sumsum tulang 0,12 3 Colon 0,12 4 Lambung 0,12 5 Paru-paru 0,12 6 Ginjal 0,05 7 Payudara 0,05 8 Liver 0,05 9 Oesophagus 0,05 10 Kelenjar Gondok Tiroid 0,05 11 Kulit 0,01 12 Permukaan tulang 0,01 13 Organ sisanya atau Pusat Pendidikan dan Pelatihan jaringan tubuh 0,05 17
Satuanini didefinisikan intensitas cahaya dari suatu sumber cahaya uang memancarkan radiasi monokromatik pada frekuensi 540 x 10 12. hertz dengan intensitas radiasi sebesar 1/683 watt per steradian dalam arah tersebut. Satuan Jumlah Zat : Mole. Mole atau yang disingkat (mol) alah jumlah zat yang mengandung unsur elementer zat tersebut dalam
Berikut contoh contoh soal dan pembahasan Rumus Perhitungan Energi Kinetik, Frekuensi, Panjang Gelombang Ambang, Beda Potensial Henti Foton Elektron, Radiasi Benda Hitam, sebagai merupakan modifikasi dari bentuk soal soal ujian agar lebih mudah dipahami dan tentu mudah untuk Contoh Soal Pembahasan Rumus Efek Fotolistrik ā Menentukan Energi Kinetik Maksimum Foto Elektron, Pada percobaan efek fotolistrik digunakan logam target yang memiliki fungsi kerja 3,76 x 10-19 J. Jika pada logam target dikenai foton dengan Panjang gelombang 4000 Angstrom, maka electron foto yang terlepas memiliki energi kinetic maksimum sebesarā¦DiketahuiĪ» = 4000 Angstrom = 4 x 10-7 mh = 6,6 x 10-34 JsFungsi kerja W = 3,76 x 10-19 JMenentukan Energi Kinetik Maksimum Foto Elektron Dikenai Foton, Energi kinetic maksimum electron ketika ditembak foton dapat dinyatakan dengan persamaan berikutā¦EK = hf ā W atauEK = hc/ Ī» ā WEK = [6,6 x 10-34 x 3 x108/ 4 x 10-7] ā 3,76 x 10-19EK = 4,95 x 10-19 ā 3,76 x 10-19EK = 1,19 x 10-19 JJadi, energi maksimum foto electron adalah 1,19 x 10-19 J2. Contoh Soal Pembahasan Teori Foton ā Menentukan Panjang Gelombang Sinar Gamma Dari Energinya, Hitunglah Panjang gelombang sinar gamma, jika sinar gamma tersebut memiliki Energi sebesar 108 eV dengan tetapan Planck sebesar 6,6 x 10-34 = 6,6 x 10-34 = 108 eV atauE = 1,6 x 10-11 Jc = 3 x 108 m/detikMenentukan Panjang Gelombang Sinar Gamma Dari Energinya, Panjang gelombang sinar gamma dapat dinyatakan dengan rumus teori foton sebagai berikutā¦E = atauE = h . c/Ī» atauĪ» = h . c/EĪ» = 6,6 x 10-34 x 3 x 108/1,6 x 10-11Ī» = 1,2375 x 10-14 mJadi, Panjang gelombang sinar gamma adalah 1,2375 x 10-14 m3. Contoh Soal Pembahasan Rumus Teori Kuantum Planck Menentukan Energi Sinar Ungu, Tentukanlah Kuanta energi sinar ungu yang memiliki Panjang gelombang 3300 Angstrom, jika konstanta Planck 6,6 x 10-34 Js dan kecepatan cahaya 3 x 108 m/ = 6,6 x 10-34 Jsc = 3 x 108 m/detikĪ» = 3300 Angstrom atauĪ» = 3,3 x 10-7 mRumus Menghitung Energi Kuanta Sinar Ungu, Energi kuanta sinar ungu dapat dinyatakan dengan menggunakan persamaan berikutā¦E = h . c/ Ī»E = 6,6 x 10-34 x 3 x 108/3,3 x 10-7E = 6 x 10-19 JJadi, energi kuanta sinar ungu adalah 6 x 10-19 J4. Contoh Soal Pembahasan Energi Kinetik Elektron Yang Lepas Dari Permukaan Logam, Frekuensi ambang suatu logam sebesar 4,0 x 1014 Hz dan logam tersebut disinari dengan cahaya yang memiliki frekuensi 2 x 1015 Hz. Jika tetapan Planck 6,6 x 10-34 Js, tentukan energi kinetik elektron yang terlepas dari permukaan logam tersebutā¦Diketahuif0 = 4,0 x 1014 Hzf = 2 x 1015 Hzh = 6,6 Ć 10-34 JsMenentukan Energi Kinetik Elektron ā Efek Fotolistrik, Energi kinetic electron yang terlepas dari permukaan dapat ditentukan dengan persamaan berikutā¦EK= ā = 6,6 x 10-34 x 2 x 1015 ā 0,4 Ć 1015EK = 1,065 x 10-18 JJadi, energi kinetic elektronnya adalah 1,065 x 10-18 J5. Contoh Soal Pembahasan Frekuensi Ambang Sinar Violet Untuk Membebaskan Elektron Permukaan Tembaga, Sinar ultra violet yang memiliki frekuensi 1,5 x 1015 Hz ditembakan pada permukaan logam tembaga dan menghasilkan energy kinetic sebesar 1,65 eV. Tentukan frekuensi ambang foton sinar violet agar dapat melepaskan electron electron pada permukaan logam tersebutā¦DiketahuiEK = 1,65 eV atauEK = 2,64 x 10-19 Jf = 1,5 x 1015 Hzh = 6,6 x 10-34 JsMenentukan Frekuensi Ambang Sinar Ulatra Violet, Frekuensi ambang foton dapat dinyatakan dengan rumus berikutā¦EK = E ā WEK = ā h f0f0 = āEK/ hf0 = f ā EK/hf0 = 1,5 x 1015 ā 2,64 x 10-19/6,6 x 10-34f0 = 1,5 x 1015 ā 0,4 x 1015f0 = 1,1 x 10-15 HzJadi, frekuensi ambang foton adalah 1,1 x 10-15 Hz6. Contoh Soal Pembahasan Menentukan Potensial Penghenti Cahaya, Tentukanlah potensial penghenti untuk cahaya yang memiliki Panjang gelombang sebesar 3000 Angstrom, jika fungsi kerja untuk sebuah logam adalah 2 = 2 eV atauW = 2 x 1,6 x 10-19 JW = 3,2 x 10-19 Jh = 6,6 x 10-34 Jsc = 3 x 108 m/detikĪ» = 3000 Angstrom atauĪ» = 3 x 10-7 mRumus Potensial Penghenti Foton ā Cahaya, Potensial penghenti dapat dirumuskan sebegai berikut⦠= EK danEK = E ā W = E ā WMenghitung Energi Kinetik Maksimum Fotoelektron, Energi kinetic maksimum dapat dihitung dengan rumus berikutā¦EK = Ī» ā WEK = 6,6 x 10-34 x 3 x 108/3 x 10-7 ā 3,2 x 10-19EK = 6,6 x 10-19 ā 3,2 x 10-19EK =3,4 x 10-19 JMenghitung Potensial Penghenti Cahaya ā Fotoelektron, EK = e V0V0 = EK/eV0 = 3,4 x 10-19/1,6 x 10-19V0 = 2,125 voltJadi, potensial penghenti cahaya adalah 2,125 Contoh Soal Pembahasan Frekuensi Ambang Foton Energi Kinetik Beda Potensial Henti Elektron, Seberkas sinar dengan frekuensi 2 x 1015 Hz ditembakan pada permukaan suatu logam yang memiliki fungsi kerja 3,3 x 10-19 dengan konstanta Planck 6,6 x 10-34 Js. Tentukanlah frekuensi ambang foton, energi konetik maksimm fotoelektron dan beda potensial henti = 3,3 x 10-19 Jf = 2 x 1015 Hzh = 6,6 x 10-34 JsMenentukan Frekuensi Ambang Foton, Frekuensi ambang foton dapat ditentukan dengan menggunakan persamaan berikutā¦W = h f0 atauf0 = W/hf0 = 3,3 x 10-19/6,6 x 10-34f0 = 5 x 1014 HzJadi, Frekuensi ambangnya adalah 5 x 1014 HzMenentukan Energi Foton Berkas Cahaya, Energi foton berkas cahaya dapat dirumuskan sebagai berikutā¦E = h fE = 6,6 x 10-34 x 2 x 1015E = 13,2 x 10-19 JJadi, Energi fotonnya adalah 13,2 x 10-19 JMenentukan Energi Kinetik Maksimum Fotoelektron ā Efek Fotolistrik, Energi kinetic maksimum fotoelektron dapat dinyatakan dengan menggunakan rumus berikutā¦EK = E ā WEK = 13,2 x 10-19 ā 3,3 x 10-19EK = 9,9 x 10-19 JJadi, energi kinetic foto electron adalah 9,9 x 10-19 JMenentukan Beda Potensial Henti Elektron, Beda potensial henti electron dapat dirumuskan dengan peramaan berikut⦠= EKV = EK /eV = 9,9 x 10-19/1,6 x 10-19V= 6,19 voltJadi, beda potensial henti electron adalah 6,19 volt8. Contoh Soal Pembahasan Panjang Gelombang Pada Rapat Energi Maksimum Benda Hitam, Sebuah benda hitam bersuhu 725 K dengan konstanta Wien C = 2,9 x 10-3 mK, maka rapat energi maksimum yang dipancarkan benda itu terletak pada Panjang gelombang ā¦T = 725 KC = = 2,9 x 10-3 mKMenghitung Panjang Gelombang Pada Rapat Energi Maksimum Benda Hitam, Panjang gelombang ketika rapat energi maksimum dapat dirumuskan sebagai berikutā¦Ī» T = C atauĪ» = C/ TĪ» = 2,9 x 10-3/725Ī» = 4 x 10-6 mJadi, Panjang gelombang adalah 4 x 10-6 m,9. Contoh Soal Pembahasan Panjang Gelombang Mengandung Energi Radiasi Maksimum Benda Hitam, Sebuah benda dipanaskan sampai 1227 0C, jika konstanta Wien 3,0 x 10-3 mK, maka Panjang gelombang yang membawa energi terbanyak adalahā¦T = 1227 + 273 + 1500 KC = = 3 x 10-3 mKMenghitung Panjang Gelombang Pada Rapat Energi Maksimum Benda Hitam, Panjang gelombang ketika rapat energi maksimum dapat dirumuskan sebagai berikutā¦Ī» T = C atauĪ» = C/ TĪ» = 3 x 10-3/1500Ī» = 2 x 10-6 mJadi, Panjang gelombang adalah 2 x 10-6 m10. Contoh Soal Pembahasan Temperatur Menghasilkan Energi Radiasi Maksimum Benda Hitam, Suatu benda panas memancarkan radiasi dengan panjang gelombang 4 x 10-6 m dan menghasilkan energi radiasi maksimum. Jika C = 2,89 x 10-3 mK. Berapakah suhu benda tersebut⦠= 2,89 x10-3 mKĪ» = 4 x 10-6 mMenentukan Suhu Benda Hitam Memancarkan Radiasi Maksimum, Menghitung suhu benda hitam yang memancarkan energi radiasi maksimum dapat dirumuskan dengan persamaan berikutā¦Ī» T = C atauT = C/Ī»T = 2,89 x 10-3/4 x 10-6T = 722,5 KJadi, suhu benda yang memancarkan energi radiasi maksimum adalah 722,5 K11. Contoh Soal Pembahasan Suhu Radiasi Benda Hitam Dari Grafik Intensitas Panjang Gelombang, Pada gambar diperlihatkan hubungan intersitas radiasi I dengan Panjang gelombang suatu benda panas. Jika konstanta Wien C = 2,898 x 10-3 mK, maka berapa suhu benda tersebutā¦Grafik Intensitas I Panjang Gelombang Ī»,Menentukan Suhu Benda Panas Dari Grafik Intensitas Panjang Gelombang Radiasi Benda Hitam, Pada gambar dapat diketahui bahwa Panjang gelombang yang menghasilkan intensitas tertinggi adalah Ī» = 2 x 10-6 m, sehingga suhunya dapat dirumuskan dengan persamaan berikutā¦Ī» T = C atauT = C/Ī»T = 2,898 x 10-3/2 x 10-6T = 1449 KJadi, suhu benda hitam adalah 1449 Contoh Soal Pembahasan Menentukan Panjang Gelombang Menghasilkan Energi Radiasi Maksimum Pada Grafik, Grafik berikut menunjukkan hubungan intensitas I dengan Panjang gelombang dari suatu benda hitam sempurna dan pengaruh suhu terhadap intensitas,Grafik Panjang Gelombang Menghasilkan Energi Radiasi Maksimum Pada Suhu,Jika konstanta Wien C = 3,0 x 10-3 mK, maka berapa Panjang gelombang maksimum yang dipancarkan benda ketika suhunya mencapai T1ā¦DiketahuiT1 = 1227 + 273 = 1500 0CC = 3,0 x 10-3 mKMenentukan Panjang Gelombang Maksimum Radiasi Dari Grafik Benda Hitam Panas, Panjang gelombang maksimum yang diradiasikan benda hitam panas dapat ditentukan dengan menggunakan rumus berikutā¦Ī» T = C atauĪ» = C/ TĪ» = 3,0 x 10-3/1500Ī» = 2,0 x 10-6 m atauĪ» = AngstromJadi, Panjang gelombang maksimum yang diradiasikan benda panas adalah 2,0 x 10-6 m13. Contoh Soal Pembahasan Energi Radiasi Emisivitas Benda Hitam, Sebuah benda memiliki luas 200 cm2 dan suhunya 227 oC, jika diketahui emisivitas benda tersebut 0, energi radiasi yang dipancarkan oleh benda tersebutā¦Diketahui A = 200 cm2 = 2 x10-2 m2T = 273 + 227 K = 500 Ke = 0,5 = 5,67 x 10-8 W m-2K-4Menghitung Energi Radiasi Benda Panas Yang Mempunyai Luas Dan Emisivitas, Energi radiasi benda bertempratur dengan luas dan emisivitas dapat dinyatakan dengan rumus berikutā¦P = e AT4P = 0,5 x 5,67 x 10-8 x 2 x 10-2 x 5004P = 35,44 WJadi, energi radiasi benda adalah 35,44 W14. Contoh Soal Pembahasan Daya Radiasi Benda Hitam Dengan Luas Penampang, Suatu benda hitam memiliki suhu 27 0C dan mengalami radiasi dengan intensitas 8 x 102 watt/m2 untuk luas penampang benda itu 1 x 10-3 m2. Tentukan daya radiasi dan energi radiasinya selama 10 detikā¦DiketahuiT = 27 0C + 273 = 300 KA = 1 x 10-3 m2I = 8 x 102 watt/m2Menghitung Daya Radiasi Benda Hitam Pada Luas Penampang, Daya radiasi benda hitam dapat ditentukan dengan persamaan berikutā¦P = = 8 x 102 x 1 x 10-3P = 0,8 wattJadi daya radiasi benda hitam adalah 0,8 wattMenentukan Energi Radiasi Selama Waktu Tertentu, Energi radiasi selama 10 detik dapat dinyatakan dengan rumus berikutā¦E = P. tE = 0,8 x 10 = 8 jouleJadi, energi radiasi yang dihasilkan adalah 8 Contoh Soal Pemahasan Jumlah Foton Pemancar Radio, Sebuah pemancar radio berdaya 3 kW memancarkan gelombang elektromagnetik yang energi tiap fotonnya 3 x 10-18 Joule. Berapa jumlah foton yang dipancarkan setiap detiknya⦠= 3 kW = 3000 wattE = 3 x 10-18 Jt = 1 detikMenentukan Jumlah Foton Per Detik Pemancar Radio, Jumlah foton yang dipancarkan pemancar radio persatuan waktu dapat dinyatakan dengan menggunakan rumus berikutā¦P = nE/t ataun = P t/En = 3000 x 1/ 3 x 10-18n = 1 x 1021 fotonjadi, jumlah foton yang dipancarkan setiap satu detiknya adalah 1 x 1021 Contoh Soal Pembahasan Energi Foton Pemancar Radio, Sebuah pemancar radio berdaya 2 kW memancarkan foton setiap detiknya sebanyak 1 x 1021 buah. Jika h = 6,6 x 10-34 Js, maka energi yang dimiliki oleh tiap foton adalahā¦Diketahui..P = 2 kW = 2000 watth = 6,6 x 10-34 Jsn = 1 x 1021t = 1 detikMenghitung Energi Foton Pemancar Radio, Energi foton yang dipancarkan dapat dihitung dengan rumus berikutā¦P = nE/t atauE = Pt/nE = 2000 x 1/ 1 x 1021E = 2 x 10-18 JJadi, energi foton yang dipancarkan pemancar radio adalah 2 x 10-18 J17. Contoh Soal Pembahasan Panjang Gelombang Momentum Foton Efek Compton, Sebuah foton memiliki Panjang gelombang 330 nm dengan konstanta Planck 6,6 x 10-34 Js, tentukan momentum foton tersebutā¦DiketahuiĪ» = 330 nm = 3,3 x 10-7 mh = 6,6 x 10-34 JsRumus Menentukan Momentum Foton Dengan Panjang Gelombang Konstanta Planck, Mementum sebuah foton dapat dinyatakan dengan menggunakan rumus berikutā¦p = h/ Ī»p = 6,6 x 10-34/3,3 x 10-7p = 2,0 x 10-27 NsJadi, momentum foton adalah 2,0 x 10-27 Ns18. Contoh Soal Pembahasan Momentum Elektron Dengan Panjang Gelombang Efek Compton, Jika konstanta Planck 6,6 x 10-34 Js dan Panjang gelombang sebuah electron adalah 2 x 10-10, berapa momentum dari electron tersebut⦠= 2 x 10-10 mh = 6,6 x 10-34 JsMenghitung Momentum Elektron Dengan Panjang Gelombang ā Efek Compton, Besar momentum electron dengan Panjang gelombang tertentu dapat dirumuskan dengan persamaan berikutā¦p = h/ Ī»p = 6,6 x 10-34/2 x 10-10p = 3,3 x 10-24 NsJadi, momentum electron adalah 3,3 x 10-24 Ns19. Contoh Soal Pembahasan Panjang Gelombang De Broglie Elektron Bergerak, Elektron yang massanya 9 x 10-31 kg bergerak dengan kecepatan 2,2 x 107 m/s/ Jika konstanta Planck 6,6 x 10-34 Js, maka Panjang gelombang de Broglie electron yang bergerak tersebut adalah⦠= 9 x 10-31 kgv = 2,2 x 107 m/sh = 6,6 x 10-34 JsRumus Panjang Gelombang De Broglie Elektron Bergerak, Panjang gelombang de Braglie electron dapat dirumuskan dengan persamaan berikutā¦Ī» = h/mvĪ» = 6,6 x 10-34/9 x 10-31 x 2,2 x 107Ī» = 3,33 x 10-11 mJadi, Panjang gelombang de Broglie electron adalah 3,33 x 10-11 m20. Contoh Soal Pembahasan Panjang Gelombang de Broglie Elektron Pada Mikroskop Elektron,Pada mikroskop electron, electron bergerak dengan kecepatan 3,0 x 107 m/s, Jika massa electron 9 x 10-31 kg dan konstanta Planck 6,6 x 10-34 Js, maka Panjang gelombang de Broglie gerak electron tersebut adalah⦠= 9 x 10-31 kgv = 3,0 x 107 m/sh = 6,6 x 10-34 JsRumus Panjang Gelombang De Broglie Elektron Bergerak, Panjang gelombang de Braglie electron dapat dirumuskan dengan persamaan berikutā¦Ī» = h/mvĪ» = 6,6 x 10-34/9 x 10-31 x 3,0 x 107Ī» = 2,44 x 10-11 mJadi, Panjang gelombang de Broglie electron yang bergerak dalam mikroskop electron adalah 2,44 x 10-11 m21. Contoh Soal Pembahasan Kecepatan Elektron Dengan Panjang Gelombang De Broglie, Sebuah electron bermassa 9 x 10-31 kg sedang bergerak dengan Panjang gelombang de Broglie 3,3 x 10-11 m, jika konstanta Planck 6,6 x 10-34 Js, tentukanlah kecepatan gerak electron tersebutā¦m = 9 x 10-31 kgĪ» = 3,3 x 10-11 mh = 6,6 x 10-34 JsMenentukan Kecepatan Gerak Elektron Dengan Panjang Gelombang De Broglie, Kecepatan gerak electron yang memiliki Panjang gelombang de Broglie dapat dihitung dengan rumus berikutā¦Ī» = h/mv atauv = h/mĪ»v = 6,6 x 10-34/9 x 10-31 x 3,3 x 10-11v = 2,22 x 107 m/sJadi, electron bergerak dengan kecepatan 2,22 x 107 m/s22. Contoh Soal Pembahasan Energi Total Dipancarkan Baja Dengan Konstanta Stefan Boltzmann, Sebuah plat baja dengan Panjang 1 m lebar 0,5 m dipanaskan mencapai suhu 327 0C. Bila konstanta Stefan ā Boltzmann 5,67 x 10-8 Wm-2K-4 dan plat baja diasumsikan sebagai benda hitam sempurna, maka energi total yang dipancarkan plat baja setiap detiknya adalahā¦. = 327 + 273 = 600 K = 5,67 x 10-8 W m-2K-4A = 2 x 1 x 0,5 dua permuakaanA = 1 mt = 1 detike = 1 benda hitam sempurnaMenghitung Energi Total Dipancarkan Dari Luas Permukaan Plat Baja Panas Energi radiasi benda bertempratur dengan luas dan emisivitas dapat dinyatakan dengan rumus berikutā¦E = e AT4 tE = 1 x 5,67 x 10-8 x 6004 x 1E = 7348 JouleJadi, energi total yang dipancarkan plat baja adalah 7348 Joule23. Contoh Soal Pembahasan Energi Radiasi Dipancarkan Setelah Suhu Dinaikkan, Suatu benda hitam pada suhu 127 Celcius memancarkan energi 200 J/s. Benda hitam tersebut dipanaskan lagi sehingga mencapai 527 Celcius, Berapa Energi yang dipancarakan pada temperature 527 Celciusā¦DiketahuiT1 = 127 + 273 = 400 KP1 = 200 j/sT2 = 527 + 273 = 800 KP2 = ⦠Rumus Menentukan Kenaikkan Energi Radiasi Benda Hitam Dipancarkan Setelah Temperatur Dinaikkan, Kenaikkan energi yang dipancarkan akibat temperature benda dinaikkan dapat dihitung dengan rumus berikutP = E/t = e AT4kondisi awalP1 = E1/t = e A1 T14kondisi setelah suhu T1 dinaikkan menjadi T2P2 = E2/t = e A2 T24A1 = A2 makaP1/P2 = T1/T24 atauP2 = P1 T2/T14P2 = 200 800/4004P2 = 1600 J/sJadi energi yang dipancarkan setelah suhu dinaikkan adalah 1600 J/s24. Contoh Soal Pembahasan Rumus Mengukur Suhu Matahari ā Hukum Pergeseran Wien, Hubungan intensitas dan Panjang gelombang spektrum radiasi Matahari yang diukur di luar angkasa ditunjukkan pada grafik di Mengukur Suhu Matahari ā Hukum Pergeseran Wien,Grafik tersebut sangat mirip dengan grafik intensitas radiasi benda hitam, sehingga bisa diasumsikan bahwa Matahari sebagai benda hitam dengan spektrum berada pada daerah Panjang gelombang sinar pada grafik di atas, tentukanlah suhu permukaan Matahari tersebutā¦DiketahuiĪ» = 5 x 10-7 mC = 2,898 x 10-3 mKMenentukan Suhu Permukaan Matahari ā Hukum Pergeseran Wien, Suhu permukaan Matahari dapat diperkirakan dengan menggunakan asumsi bahwa Matahari sebagai benda hitam sehingga dapat memenuhi hukum Pergeseran Hukum Pergeseran WienĪ» T = C atauT = C/ Ī»T = 2,898 x 10-3/5 x 10-7T = 5796 KJadi, suhu permukaan Matahari adalah 5796 KRingkasan Materi Radiasi Benda Hitam, Benda Hitam,Benda hitam adalah benda yang akan menyerap semua energi yang datang dan akan memancarkan energi dengan yang mempunyai sifat menyerap semua energi yang mengenainya disebut benda Benda HitamBenda hitam jika dipanaskan akan memancarkan energi radiasi. Energi radiasi yang dipancarkan oleh benda hitam disebut radiasi benda yang dihasilkan benda hitan sempurna disebut radiasi benda hitamEnergi Radiasi, Energi yang dipancarkan benda ke sekitarnya disebut energi radiasi yang dipancarkan sebuah benda dalam bentuk gelombang, yaitu gelombang Energi Radiasi Benda HitamE = e AT4 tA = luas yang disinari cahayaT = suhu mutlak Kelvine = emisitas 0 ⤠e ⤠1 = konstanta Stefan Boltzmann = 5,67 x 10-8 W m-2K-4t = waktu penyinaran detikEmisivitas, Kemamouan meradiasikan energi dalam bentuk gelombang elektromagnetik disebut yang menyerap semua radiasi yang diterimanya disebut benda hitam sempurna dengan emisivitaa e = 1,Rumus Daya Radiasi Benda HitamP = E/tE = energi radiasi Jt = waktu detikP = daya wattRumus Intensitas RadiasiIntensitas RadiasiI = P/AI = intensitasP = daya radiasiA = luas yang disinari cahayaTeori Kuantum PlanckPlanck membuat toeri kuantum yang dapat disimpulan sebagai benda yang mengalami radiasi akan memancarkan energinya secara diskontinu diskrit berupa paket-paket energi. Paket-paket energi ini dinamakan kuanta sekarang dikenal sebagai foton.Rumus Hukum Kuantum PlanckE = h fE = energi foton joulef = frekuensi foton Hzh = tetapan Planck h = 6,6 x 10-34 JsEfek FotolistrikGejala terlepasnya electron electron dari permukaan plat logam ketika disinari dengan frekuensi tertentu disebut efek fotolistrikRumus Energi Kinetik Elektron Efek Fotolistrik, EK = E ā WEK = ā h f0EK = energi kinetic lectronW = fungsi kerjaf0 = frekuensi ambangElektron Foto ā Foton ElektronElektron yang terlepas dari permukaan plat logam akibat disinari dengan frekuensi tertentu disebut foton Potensial potensial henti adalah potensial ketika energi potensial sama dengan besar energi kinetic yang dimiliki Beda Potensial Henti, EK = = muatan electronV = beda potensial hentiFungsi Kerja ā Energi Ambang,Besarnya energi minimal yang diperlukan untuk melepaskan lectron dari energi ikatnya disebut fungsi kerja W atau energi Fungsi Kerja, W = kerja energi ambang yaitu energi terendah dari foton agar mampu menimbulkan efek fotolistrikFrekuensi Ambang, Frekuensi foton terkecil yang mampu menimbulkan lectron foto disebut frekuensi ambang yaitu frekuensi foton terendah yang mampu menimbulkan efek fotolistrikPanjang Gelombang Ambang, Panjang gelombang terbesar yang mampu menimbulkan lectron foto disebut Panjang gelombang ComptonEfek Compton adalah peristiwa terhamburnya sinar-X akibat tumbukan dengan electron. Panjang gelombang sinar-X menjadi lebih besar dari sebelumnya dan frekuensi menjadi lebih kecil dari Momemtum Elektron Ketika Tumbukan Akibat Efek = h/ Ī»p = momentum elekronĪ» = Panjang gelombangh = tetapan PlanckRumus Panjang Gelombang Hamburan Efek ComptonĪ»ā ā Ī» = h/m0c x 1 ā cos ĪøĪ» = Panjang gelombang sebelum tumbukan, mĪ»ā = Panjang gelombang setelah tumbukan, mm0 = massa diam electron, kgĪø = sudut hamburanHukum Pergeseran WienJika suatu benda dinaikkan suhunya, maka Panjang gelombang yang menghasilkan intensitas pancaran maksimum bergeser semakin ke Pergeseran WienĪ»maks T = CT = suhu KĪ»maks = Panjang gelombang pada intensitas maksimum, mC = konstanta Wien = 2,989 x 10-3 mKTeori de BrogliePanjang gelombang de BroglieĪ» = h/pĪ» = h/ = h/ ā ĪVĪ» = h/ ā = momentume = muatan electron coulombm= massa partikelĪV = beda potensial voltv = kecepatan partikel m/sListrik Dinamis Hambatan Jenis, Hukum Ohm, Hukum I + II Kirchhoff, Rangkaian Listrik, Energi Daya Listrik,Hukum Biot Savart, Gaya Lorentz, Induksi Medan Magnetik Pengertian Rumus Contoh Soal Perhitungan,Sifat Kutub Magnet, dan Kegunaan MagnetPerubahan Wujud Zat Benda Pengertian Pengaruh Kalor Laten Titik Lebur Beku Didih Uap Embun Contoh Soal Rumus Cara Perhitungan Contoh Soal Perhitungan Tingkat Energi Dipancarkan Elektron Spektrum Deret Lyman BalmerProses Termodinamika Pengertian Isobaric Isothermal Isokorik Adiabatic Contoh Soal Rumus Perhitungan 10Arus AC Bolak Balik Pengertian Tegangan Efektif Maksimum Reaktansi Induktif Kapasitif Impendansi Fasor Contoh Soal Rumus Perhitungan Sudut Fase Rangkaian RLC 1423+ Contoh Soal Rumus Perhitungan Hukum 1 Kirchhoff ā Energi ā Daya ā Rangkaian Listrik ā Hambatan Jenis Massa Defek dan Energi Ikat Inti Atom Pengertian Rumus Contoh Soal Perhitungan 5Perpindahan Kalor Pengertian Panas Konduksi Konveksi Rediasi Koefisien Konduktivitas Termal Emisivitas Contoh Soal Rumus Perhitungan 101234567>>
6 Konversi Satuan Intensitas Cahaya. Satuan cahaya adalah merupakan satuan unit ukur untuk mengukur kekuatan cahaya dari sumber cahaya berasal yang didasarkan pada radiasi monochromatic yaitu sebesar 540 x 1012 hertz dengan intensitas radian di arah 1ā683 watt per steradian. adapun beberapa satuan intensitas cahaya adalah sebagai berikut:
Table Of Content [ Close ]1. 1. Pengertian2. 2. Cara Perpindahan Kalor Secara Radiasi3. 3. Rumus Perpindahan Kalor Secara Benda Hitam Black Body Benda Abu-Abu Gray Body4. 4. Spektrum Elektromagnetik5. 5. Contoh Perpindahan Kalor Secara Radiasi 1. Pengertian Perpindahan kalor secara radiasi adalah suatu proses mengalirnya energi kalor dari suatu benda yang bersuhu tinggi ke benda yang bersuhu lebih rendah melalui medium gelombang elektromagnetik. Perpindahan energi kalor radiasi terjadi apabila benda-benda tersebut terpisah di dalam ruang, bahkan apabila terdapat ruang hampa di antaranya. Pada umumnya istilah radiasi digunakan pada segala sesuatu hal yang berhubungan dengan gelombang elektromagnetik. Namun hal yang perlu diperhatikan dalam ilmu perpindahan kalor adalah tentang suatu hal yang diakibatkan oleh suhu yang dapat mengangkut energi melalui medium yang dapat melewati ruang atau medium yang tembus cahaya. Energi yang berpindah dengan mekanisme tersebut diistilahkan dengan kalor radiasi. Sehingga materi akibat perubahan susunan elektron atau perubahan konfigurasi pada atom atau molekul pembangun materi tersebut dapat memancarkan energi berupa kalor. Energi diangkut dengan gelombang elektromagnetik. Gelombang elektromagnetik bergerak dalam garis lurus dalam medium yang seragam atau vakum hampa udara hingga gelombang elektromagnetik dipantulkan atau diserap absorb. Perambatan kecepatan gelombang elektromagnetik dalam vakum hampa udara sama dengan kecepatan cahaya. Mekanisme perpindahan kalor secara radiasi pada dasarnya sama dengan mekanisme radiasi cahaya. Perpindahan kalor pada radiasi panas merupakan semua diri yang memancarkan energi oleh proses dari radiasi elektromagnetik. Intensitas tersebut dari penyebaran energi tergantung pada temperatur tersebut dari diri dan alam pada permukaan tersebut. Sebagai contoh panas yang sampai ketika duduk dimuka api itu adalah energi radiasi, energi radiasi roti panggang pada pemanggang listrik dan panasnya ketika berjalan dibawah sinar matahari. Semua benda memancarkan panas radiasi secara terus-menerus. Intensitas tingkatan pancaran tergantung pada suhu dan sifat permukaan. Energi radiasi bergerak dengan kecepatan cahaya 3Ć108 m/s dan gejala-gejalanya merupakan radiasi cahaya. Menurut teori elektromagnetik, radiasi cahaya dan radiasi termal hanya berbeda dalam panjang gelombang masing-masing. Gambar perpindahan kalor secara radiasi Panas radiasi dipancarkan oleh suatu benda dalam bentuk batch kumpulan energi yang terbatas quanta. Teori gelombang dapat menguraikan gerakan kalor radiasi di dalam ruang seperti perambatan cahaya. Apabila gelombang radiasi menjumpai benda yang lain, maka energinya diserap di dekat permukaan benda tersebut. Perpindahan kalor dengan cara radiasi menjadi semakin penting dengan meningkatnya suhu suatu benda. Aliran panas dalam suatu sistem transient sementara juga dikenal dengan istilah fana tidak kekal. Atau unsteady tidak konstan bila suhu di berbagai titik dari sistem tersebut berubah dengan waktu. Karena perubahan suhu menunjukkan perubahan energi dalam sistem. Maka dapat disimpulkan bahwa penyimpanan energi adalah bagian yang tidak terpisahkan dari aliran panas unsteady tidak konstan. 3. Rumus Perpindahan Kalor Secara Radiasi Benda Hitam Black Body Sifat permukaan dan suhu permukaan sangat mempengaruhi jumlah energi yang meninggalkan suatu permukaan sebagai kalor radiasi. Radiator sempurna atau benda hitam black body memancarkan energi radiasi dari permukaan dengan laju qr. Sehingga dapat ditentukan dengan hubungan sebagai berikut Dimana satuan laju perpindahan kalor secara radiasi qr adalah Btu/h jika luas permukaan A1 dalam ft2. Suhu permukaan T1 dalam derajat Rankine R. Dan konstanta dimensional dengan nilai 0,1714 Ć 10-8 Btu/ Dalam satuan SI, laju perpindahan kalor secara radiasi qr mempunyai satan watt jika luas permukaan A1 dalam m2. Suhu permukaan T1 dalam derajat Kelvin K. Dan konstanta dimensional dengan nilai 5,67 Ć 10-8 watt/ Besaran dinamakan dengan konstanta Stefan-Boltzmann berdasarkan nama dua orang ilmuwan Austria, J. Stevan, pada tahun 1879 menemukan persamaan tersebut secara eksperimental percobaan dan L. Boltzmann, pada tahun 1884 menurunkannya secara teoretik teori. Peninjauan terhadap persamaan tersebut di atas menunjukkan bahwa permukaan benda hitam manapun akan meradiasi energi dengan laju yang sebanding dengan suhu pangkat empat. Walaupun laju pancaran rate of emission tidak tergantung pada kondisi sekitar. Perpindahan bersih netto panas radiasi memerlukan adanya perbedaan suhu permukaan antara dua benda di antara dimana pertukaran panas berlangsung. Apabila benda hitam memancarkan radiasi ke sebuah penutup yang mengurungnya dimana juga mempunyai permukaan hitam dengan emitansi atau emittance ϵ sama dengan satu. Maka penutup tersebut mampu menyerap semua energi radiasi yang datang padanya. Sehingga nilai laju bersih perpindahan kalor radiasi dapat ditentukan dengan persamaan sebagai berikut Dimana T2 adalah suhu permukaan penutup dalam derajat Fahrenheit F. Benda Abu-Abu Gray Body Benda-benda yang nyata real bodies tidak memenuhi spesifikasi perincian radiator ideal. Tetapi memancarkan radiasi dengan laju yang lebih rendah daripada benda hitam. Jika pada suhu yang sama dengan benda hitam, benda nyata akan memancarkan sebagian yang konstan dari pancaran benda hitam pada setiap panjang gelombang. Maka benda tersebut disebut dengan benda abu-abu gray body. Laju bersih perpindahan kalor dari benda abu-abu dengan suhu T1 ke benda hitam dengan suhu T2 yang mengelilinginya dapat ditentukan dengan persamaan sebagai berikut Dimana ϵ adalah emitansi emittance permukaan abu-abu dan sama dengan perbandingan pancaran emission dari permukaan abu-abu terhadap pancaran dari radiator sempurna pada suhu yang sama. Tabel nilai emisitivitas permukaan logam 4. Spektrum Elektromagnetik Panas radiasi terjadi pada jarak dari spektrum elektromagnetik dari emisi energi. Hal tersebut hampir sama dengan sifat gelombang seperti cahaya atau radio. Setiap banyaknya dari energi radian mempunyai panjang gelombang lamda dan frekuensi. Sebagian besar di dalam spektrum elektromagnetik adalah gelombang bantalan energi, hanya sebagian kecil dari yang panas. Hanya jendela terkecil yang dapat dilihat di dunia sekitar kita yang ada di dalam spektrum ini. Panas radiasi yang komponen utama biasanya dari radiasi infra merah. Melalui banyak jendela yang besar tentang tiga urutan dari besarnya pada panjang gelombang lamda dan frekuensi. Pada tabel di bawah menunjukkan bentuk yang bervariasi melebihi jarak dari panjang gelombang yang tujuh belas jengkal dari urutan besarnya. Berikut ini merupakan karakteristik bentuk elektromagnetik spectrum gelombang. Tabel bentuk elektromagnetik spectrum gelombang Model panas radiator yang sempurna disebut black body atau benda hitam. Black body dapat menyerap semua energi yang sampai dan tidak terpantul. Syarat tersebut dapat membingungkan sedikit karena begitu black body juga dapat memancarkan energi. Kesempurnaan radiator adalah black atau hitam dengan pengertian akan menyerap semua cahaya yang kelihatan dan semua radiasi lainnya yang sampai kepada mereka. Gambar spectrum elektromagnetik 5. Contoh Perpindahan Kalor Secara Radiasi Panas sinar matahari yang dirasakan jika berjalan di siang unggun dapat menghangatkan badan apabila berada akan terpanggang saat dimasukkan di dalam microwave yang menyala. Penetasan telur ayam dengan bantuan panas dari sinar bohlam air laut oleh sinar akan kering saat dijemur di bawah panas terik pengeringan cat dengan menggunakan lampu infrared.
ZjJa. y20jngqekm.pages.dev/219y20jngqekm.pages.dev/358y20jngqekm.pages.dev/467y20jngqekm.pages.dev/315y20jngqekm.pages.dev/541y20jngqekm.pages.dev/277y20jngqekm.pages.dev/491y20jngqekm.pages.dev/110
berikut ini yang merupakan satuan intensitas radiasi adalah